Search results for "INITIAL MASS FUNCTION"

showing 9 items of 9 documents

A parametric description of the 3D structure of the Galactic bar/bulge using the VVV survey

2017

We study the structure of the inner Milky Way using the latest data release of the Vista Variables in Via Lactea (VVV) survey. The VVV is a deep near-infrared, multi-colour photometric survey with a coverage of 300 square degrees towards the Bulge/Bar. We use Red Clump (RC) stars to produce a high-resolution dust map of the VVV's field of view. From de-reddened colour-magnitude diagrams we select Red Giant Branch stars to investigate their 3D density distribution within the central 4 kpc. We demonstrate that our best-fit parametric model of the Bulge density provides a good description of the VVV data, with a median percentage residual of 5$\%$ over the fitted region. The strongest of the o…

Absolute magnitudeInitial mass functionastro-ph.GAMilky WayFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesGalaxy: bulgeBulge0103 physical sciencesAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsRed clumpGalaxy: structureAstrophysics::Galaxy AstrophysicsComputingMilieux_MISCELLANEOUSLuminosity function (astronomy)Physics010308 nuclear & particles physicsGalactic CenterAstronomyAstronomy and AstrophysicsGalaxy: fundamental parametersAstrophysics - Astrophysics of GalaxiesGalaxy: centregalaxies: individual: Milky WayRed-giant branchSpace and Planetary ScienceGalaxy: formationAstrophysics of Galaxies (astro-ph.GA)[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

MILES extended: Stellar population synthesis models from the optical to the infrared

2016

We present the first single-burst stellar population models which covers the optical and the infrared wavelength range between 3500 and 50000 Angstrom and which are exclusively based on empirical stellar spectra. To obtain these joint models, we combined the extended MILES models in the optical with our new infrared models that are based on the IRTF (Infrared Telescope Facility) library. The latter are available only for a limited range in terms of both age and metallicity. Our combined single-burst stellar population models were calculated for ages larger than 1 Gyr, for metallicities between [Fe/H] = -0.40 and 0.26, for initial mass functions of various types and slopes, and on the basis …

CAII TRIPLETStellar populationInfraredMetallicityINITIAL MASS FUNCTIONBROWN DWARFSInfrared telescopeFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesAstronomical spectroscopyinfrared: galaxiesATMOSPHERIC PARAMETERS0103 physical sciencesRange (statistics)Astrophysics::Solar and Stellar Astrophysics2.5 MU-MGIANT BRANCH STARS010303 astronomy & astrophysicsinfrared: starsEMPIRICAL CALIBRATIONAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsNear-infrared spectroscopyHIGH-SPECTRAL-RESOLUTIONAstronomy and AstrophysicsEVOLUTIONARY SYNTHESISAstrophysics - Astrophysics of GalaxiesGalaxySpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)NEWTON-TELESCOPE LIBRARYgalaxies: stellar contentAstrophysics::Earth and Planetary Astrophysics
researchProduct

Constraining the thin disc initial mass function using Galactic classical Cepheids

2016

Context: The Initial Mass Function (IMF) plays a crucial role on galaxy evolution and its implications on star formation theory make it a milestone for the next decade. It is in the intermediate and high mass ranges where the uncertainties of the IMF are larger. This is a major subject of debate and analysis both for Galactic and extragalactic science. Aims: Our goal is to constrain the IMF of the Galactic thin disc population using both Galactic Classical Cepheids and Tycho-2 data. Methods: For the first time the Besan\c{c}on Galaxy Model (BGM) has been used to characterise the Galactic population of the Classical Cepheids. We have modified the age configuration in the youngest populations…

Initial mass functionStar ClassificationCepheid variableMilky WayFOS: Physical sciencesClassificació dels estelsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciences0103 physical sciencesGalaxy formation and evolutionAstrophysics::Solar and Stellar AstrophysicsDisc010303 astronomy & astrophysicsStellar densityComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxyGalaxies evolutionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Evolució de les galàxiesAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The Gaia-ESO Survey: membership and initial mass function of the. Velorum cluster

2016

Understanding the properties of young open clusters, such as the Initial Mass Function (IMF), star formation history and dynamic evolution, is crucial to obtain reliable theoretical predictions of the mechanisms involved in the star formation process. We want to obtain a list, as complete as possible, of confirmed members of the young open cluster Gamma Velorum, with the aim of deriving general cluster properties such as the IMF. We used all available spectroscopic membership indicators within the Gaia-ESO public archive together with literature photometry and X-ray data and, for each method, we derived the most complete list of candidate cluster members. Then, we considered photometry, gra…

Initial mass functionStars: luminosity function mass functionStars: formationFOS: Physical sciencesTechniques: spectroscopicOpen clusters and associations: individual: γVelorum; Stars: formation; Stars: luminosity function mass function; Stars: pre-main sequence; Techniques: radial velocities; Techniques: spectroscopic; Astronomy and Astrophysics; Space and Planetary ScienceAstrophysicsStars: luminosity function01 natural sciencesstars: pre-main sequence / open clusters and associations: individual: γVelorum / stars: formation / stars: luminosity functionPhotometry (optics)stars: pre-main sequence / open clusters and associations: individual: γVelorum / stars: formation / stars: luminosity function mass function / techniques: radial velocities / techniques: spectroscopic0103 physical sciences010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Open clusters and associations: individual: γVelorumQCQBPhysics010308 nuclear & particles physicsStar formationTechniques: radial velocitieAstronomy and Astrophysicsmass function / techniques: radial velocities / techniques: spectroscopicAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesAstrophysics - Solar and Stellar AstrophysicsYoung populationmass functionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Techniques: radial velocitiesopen clusters and associations: individual: gamma VelorumStars: pre-main sequenceOpen cluster
researchProduct

The Gaia-ESO Survey: The present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

2017

Full list of authors: Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C. Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

Initial mass functionastro-ph.SRMetallicityMilky Wayastro-ph.GAFOS: Physical sciencesstars:abundancesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesevolution [Galaxy]Galaxy: diskpre-main sequence [Stars]0103 physical sciencesCluster (physics)Astrophysics::Solar and Stellar Astrophysicsgalaxy:disk010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsQBPhysicsGalaxy: evolutiongeneral [Open clusters and associations]010308 nuclear & particles physicsStar formationstars: abundances; stars: pre-main sequence; Galaxy: abundances; Galaxy:disk; Galaxy: evolution; open clusters and associations: generalStars: abundancesabundances [Galaxy]galaxy:evolutionAstronomy and AstrophysicsOpen clusters and associations: generalAstrophysics - Astrophysics of GalaxiesSupernovaAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)abundances [Stars]stars:pre-main sequenceChamaeleonStars: pre-main sequenceGalaxy: abundancesAstrophysics::Earth and Planetary Astrophysicsdisk [Galaxy]galaxy:abundancesopen clusters and associations:generalOpen cluster
researchProduct

Systematic variation of the stellar Initial Mass Function with velocity dispersion in early-type galaxies

2012

An essential component of galaxy formation theory is the stellar initial mass function (IMF), that describes the parent distribution of stellar mass in star forming regions. We present observational evidence in a sample of early-type galaxies (ETGs) of a tight correlation between central velocity dispersion and the strength of several absorption features sensitive to the presence of low-mass stars. Our sample comprises ~40,000 ETGs from the SPIDER survey (z<0.1). The data, extracted from the Sloan Digital Sky Survey, are combined, rejecting both noisy data, and spectra with contamination from telluric lines, resulting in a set of 18 stacked spectra at high signal-to-noise ratio (S/N> …

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Initial mass functionDark matterFOS: Physical sciencesAstronomyVelocity dispersionAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics - Astrophysics of GalaxiesGalaxyAbundance of the chemical elementsStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Galaxy formation and evolutionLenticular galaxySolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy AstrophysicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

SPIDER VIII - Constraints on the Stellar Initial Mass Function of Early-type Galaxies from a Variety of Spectral Features

2013

We perform a spectroscopic study to constrain the stellar Initial Mass Function (IMF) by using a large sample of 24,781 early-type galaxies from the SDSS-based SPIDER survey. Clear evidence is found of a trend between IMF and central velocity dispersion, sigma0, evolving from a standard Kroupa/Chabrier IMF at 100km/s towards a more bottom-heavy IMF with increasing sigma0, becoming steeper than the Salpeter function at sigma0>220km/s. We analyze a variety of spectral indices, corrected to solar scale by means of semi-empirical correlations, and fitted simultaneously with extended MILES (MIUSCAT) stellar population models. Our analysis suggests that sigma0, rather than [alpha/Fe], drives t…

PhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Initial mass functionStellar populationmedia_common.quotation_subjectFOS: Physical sciencesVelocity dispersionAstronomy and AstrophysicsAstrophysicsSpectral lineGalaxyStarsSpace and Planetary ScienceSkyGlobular clustermedia_commonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Star Formation Region NGC 6530: distance, ages and Initial Mass Function

2005

We present astrometry and $BVI$ photometry, down to $V\simeq22$, of the very young open cluster NGC6530, obtained from observations taken with the Wide Field Imager camera at the MPG/ESO 2.2 m Telescope. Both the $V$ vs. $B-V$ and the $V$ vs. $V-I$ color-magnitude diagrams (CMD) show the upper main sequence dominated by very bright cluster stars, while, due to the high obscuration of the giant molecular cloud surrounding the cluster, the blue envelopes of the diagrams at $V\gtrsim 14$ are limited to the main sequence stars at the distance of NGC6530. This particular structure of the NGC6530 CMD allows us to conclude that its distance is about $d \simeq 1250$ pc, significantly lower than the…

PhysicsInitial mass functionStar formationMolecular cloudAstrophysics (astro-ph)FOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrometryAstrophysicsStarsPhotometry (astronomy)Space and Planetary ScienceMain sequenceOpen cluster
researchProduct

Gaia DR2 reveals a star formation burst in the disc 2-3 Gyr ago

2019

We use Gaia DR2 magnitudes, colours and parallaxes for stars with G<12 to explore a 15-dimensional space that includes simultaneously the initial mass function (IMF) and a non-parametric star formation history (SFH) for the Galactic disc. This inference is performed by combining the Besancon Galaxy Model fast approximate simulations (BGM FASt) and an approximate Bayesian computation algorithm. We find in Gaia DR2 data an imprint of a star formation burst 2-3 Gyr ago, in the Galactic thin disc domain, and a present star formation rate (SFR) of about 1 Msun. Our results show a decreasing trend of the SFR from 9-10 Gyr to 6-7 Gyr ago. This is consistent with the cosmological star formation …

Stellar massFOS: Physical sciencesPerturbation (astronomy)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmass function -galaxiesstar formation rate01 natural sciencesdisk -Galaxy0103 physical sciencesGalaxy formation and evolutionAstrophysics::Solar and Stellar Astrophysicsluminosity functionDisc010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstrophysics::Galaxy AstrophysicsPhysicsstellar content -Hertzsprung-Russell and C-M diagramsstars010308 nuclear & particles physicsStar formationDiscos (Astrofísica)Astronomy and Astrophysicsstellar initial mass functioninteractionsGalaxiesAstrophysics - Astrophysics of GalaxiesStarsGalaxyRedshiftevolution -Galaxystar formation historyGalàxiesEstelsStarsGalaxyGalaxies evolutionDisks (Astrophysics)[PHYS.ASTR.GA]Physics [physics]/Astrophysics [astro-ph]/Galactic Astrophysics [astro-ph.GA]Space and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)galaxy mergeEvolució de les galàxiesAstrophysics::Earth and Planetary Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct